Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Naunyn Schmiedebergs Arch Pharmacol ; 393(12): 2439-2452, 2020 12.
Article En | MEDLINE | ID: mdl-32725283

This study evaluated the effect of (+)-catechin, a polyphenolic compound, on orofacial dyskinesia (OD) induced by reserpine in mice. The potential modulation of monoaminoxidase (MAO) activity, tyrosine hydroxylase (TH) and glutamic acid decarboxylase (GAD67) immunoreactivity by catechin were used as biochemical endpoints. The interaction of catechin with MAO-A and MAO-B was determined in vitro and in silico. The effects of catechin on OD induced by reserpine (1 mg/kg for 4 days, subcutaneously) in male Swiss mice were examined. After, catechin (10, 50 or 100 mg/kg, intraperitoneally) or its vehicle were given for another 20 days. On the 6th, 8th, 15th and 26th day, vacuous chewing movements (VCMs) and locomotor activity were quantified. Biochemical markers (MAO activity, TH and GAD67 immunoreactivity) were evaluated in brain structures. In vitro, catechin inhibited both MAO isoforms at concentrations of 0.34 and 1.03 mM being completely reversible for MAO-A and partially reversible for MAO-B. Molecular docking indicated that the catechin bound in the active site of MAO-A, while in the MAO-B it interacted with the surface of the enzyme in an allosteric site. In vivo, reserpine increased the VCMs and decreased the locomotor activity. Catechin (10 mg/kg), decreased the number of VCMs in the 8th day in mice pre-treated with reserpine without altering other behavioral response. Ex vivo, the MAO activity and TH and GAD67 immunoreactivity were not altered by the treatments. Catechin demonstrated a modest and transitory protective effect in a model of OD in mice.


Catechin/therapeutic use , Dyskinesias/drug therapy , Dyskinesias/metabolism , Mastication/drug effects , Motor Activity/drug effects , Reserpine/toxicity , Animals , Antipsychotic Agents/toxicity , Catechin/pharmacology , Dose-Response Relationship, Drug , Male , Mastication/physiology , Mice , Molecular Docking Simulation/methods , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use , Motor Activity/physiology , Protein Structure, Secondary , Treatment Outcome
2.
Pharmacol Biochem Behav ; 166: 21-26, 2018 03.
Article En | MEDLINE | ID: mdl-29374574

Tardive dyskinesia (TD) is a common adverse effect observed in patients with long-term use of typical antipsychotic medications. A vacuous chewing movement (VCM) model induced by haloperidol has been used to study these abnormalities in experimental animals. The cause of TD and its treatment remain unknown, but several lines of evidence suggest that dopamine receptor supersensitivity and gamma-aminobutyric acid (GABA) insufficiency play important roles in the development of TD. This study investigated the effects of treatment with the GABA-mimetic drug gabapentin on the development of haloperidol-induced VCMs. Male mice received vehicle, haloperidol (1.5 mg/kg), or gabapentin (GBP, 100 mg/kg) intraperitoneally during 28 consecutive days. Quantification of VCMs was performed before treatment (baseline) and on day 28, and an open-field test was also conducted on the 28th day of treatment. The administration of gabapentin prevented the manifestation of haloperidol-induced VCMs. Treatment with haloperidol alone reduced the locomotor activity in the open-field test that was prevented by co-treatment with gabapentin. We did not find any differences among the groups nor in the tyrosine hydroxylase (TH) or glutamic acid decarboxylase (GAD) immunoreactivity or monoamine levels in the striatum of mice. These results suggest that treatment with gabapentin, an analog of GABA, can attenuate the VCMs induced by acute haloperidol treatment in mice without alterations in monoamine levels, TH, or GAD67 immunoreactivity in the striatum.


Dopamine Antagonists/toxicity , GABA Modulators/pharmacology , Gabapentin/pharmacology , Haloperidol/toxicity , Mastication/drug effects , Animals , Anti-Anxiety Agents/pharmacology , Anti-Dyskinesia Agents/toxicity , Male , Mastication/physiology , Mice
...